
www.manaraa.com

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014 Dissertations and Theses

2009

Seismic Energy Dissipation of Steel Buildings
Using Engineered Cladding Systems
Quan Viet Nguyen
University of Massachusetts Amherst, nvquan@gmail.com

Follow this and additional works at: http://scholarworks.umass.edu/theses

Part of the Structural Engineering Commons

This thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Nguyen, Quan Viet, "Seismic Energy Dissipation of Steel Buildings Using Engineered Cladding Systems" (2009). Masters Theses 1911 -
February 2014. 373.
http://scholarworks.umass.edu/theses/373

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses/373?utm_source=scholarworks.umass.edu%2Ftheses%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


www.manaraa.com

 
 
 
 
 
 
 
 
 
 

SEISMIC ENERGY DISSIPATION OF BUILDINGS USING ENGINEERED 
CLADDING SYSTEMS 

 
 
 
 
 
 
 
 

A Thesis Presented 
 
 

by 
 

QUAN VIET NGUYEN 
 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate School of the 
University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 
 

MASTER OF SCIENCE IN CIVIL ENGINEERING 
 
 

May 2009 
 

Civil and Environmental Engineering 

 

 



www.manaraa.com

 
 
 
 
 
 

SEISMIC ENERGY DISSIPATION OF BUILDINGS USING ENGINEERED 
CLADDING SYSTEMS  

 
 
 
 
 
 
 

A Thesis Presented 
 

by 
 

QUAN VIET NGUYEN 
 
 
 
 
 

Approved as to style and content by: 
 
 
______________________________ 
Scott A. Civjan, Chair 
 
 
______________________________ 
Sanjay R. Arwade, Member 
 
 
______________________________ 
Sergio F. Breña, Member 
 
 

__________________________________________ 
Richard N. Palmer 
Graduate Program Director 
Civil and Environmental Engineering Department 

 

 



www.manaraa.com

 

 iii

 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to express my deep appreciation to my advisor, 

Dr. Scott A. Civjan, for his original idea of this research and continued guidance and 

support during my Master’s studies at the University of Massachusetts Amherst. Without 

his help this thesis would not be possible and I myself would never be where I am today.  

I would like to thank Dr. Sergio F. Breña and Dr. Sanjay R. Arwade for serving 

on my research committee and providing insightful comments on the final draft of this 

thesis. 

I would also like to thank Dr. Thomas J. Lardner for his stimulating lectures on 

structural dynamics and structural stability.  

Lastly, but most importantly, thank you to the members of my family for their 

unending support and encouragement over the years. I dedicate this work to them. 

 

 



www.manaraa.com

 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES............................................................................................................ VI 

LIST OF FIGURES .........................................................................................................VII 

CHAPTER 

1 INTRODUCTION ....................................................................................................... 1 

1.1 Overview................................................................................................................. 1 

1.2 Current connection practice .................................................................................... 2 

1.3 Scope of this study .................................................................................................. 7 

2 LITERATURE REVIEWS.......................................................................................... 8 

2.1 Introduction............................................................................................................. 8 

2.2 Research on cladding-structure interaction............................................................. 8 

2.3 Effectiveness of engineered connections .............................................................. 10 

2.4 Tuned mass dampers and cladding systems.......................................................... 16 

2.5 Reference structures.............................................................................................. 19 

3 CLADDING AS AN ELASTIC DISTRIBUTED DAMPING SYSTEM ................ 21 

3.1 Introduction........................................................................................................... 21 

3.2 Analysis model...................................................................................................... 21 

3.3 Analysis results and discussion............................................................................. 23 

3.4 Conclusion ............................................................................................................ 34 

4 HYSTERETIC ENERGY DISSIPATION CONNECTIONS................................... 35 

4.1 Introduction........................................................................................................... 35 

 

iv



www.manaraa.com

 

4.2 Finite element modeling of the hysteretic energy dissipation connection............ 36 

4.3 Hysteretic responses of connections ..................................................................... 46 

4.4 Conclusion ............................................................................................................ 52 

5 EFFECTS OF HYSTERETIC ENERGY DISSIPATION CONNECTIONS           
ON THE SAC 3-STORY BUILDING ...................................................................... 61 

5.1 Introduction........................................................................................................... 61 

5.2 Non-linear model of the SAC 3-Story building.................................................... 61 

5.3 Non-linear springs representing hysteretic behavior of connections.................... 64 

5.4 Non-linear analysis of the SAC 3-story building including hysteretic          
behavior of cladding-to-frame connections .......................................................... 73 

5.5 Conclusion ............................................................................................................ 81 

6 CONCLUSIONS AND RECOMMENDATIONS.................................................... 82 

6.1 Summary and conclusions .................................................................................... 82 

6.2 Limitations and recommendations for further research ........................................ 84 

BIBLIOGRAPHY............................................................................................................. 87 

 

 

v



www.manaraa.com

 

 

LIST OF TABLES 

Table                                                                                                                               Page 

2.1 Case study results from Georgia Tech (Pinelli at el. 1993). ....................................... 14 

3.1 Three-story dynamic analysis results.......................................................................... 26 

3.2 Three-story seismic response...................................................................................... 30 

3.3 Bending stresses in connections.................................................................................. 34 

5.1 Calibration of results for the OPENSEES non-linear frame....................................... 64 

5.2 “Steel 02” parameter sets. ........................................................................................... 65 

5.3 "Hysteretic material” parameter sets........................................................................... 70 

5.4 Analysis results with and without hysteretic connections .......................................... 75 

5.5 Parameters of modified hysteretic behaviors.............................................................. 76 

5.6 Structural responses when modified hysteretic behavior used. .................................. 79 

 

 

vi



www.manaraa.com

 

 

LIST OF FIGURES 

Figure                                                                                                                             Page 

1.1 Building using cladding system (from Precast/Prestressed 2007, by permission). ...... 2 

1.2 Cladding units (from Precast/Prestressed 2007, by permission). ................................. 3 

1.3 Typical cross-sections of cladding panels (from Precast/Prestressed 2007, by 

permission).......................................................................................................................... 3 

1.4 Typical connections arrangement (from Precast/Prestressed 2007, by permission)..... 4 

1.5 Bearing connection (from Precast/Prestressed 2007, by permission)........................... 4 

1.6 Tieback connection (from Precast/Prestressed 2007, by permission). ......................... 5 

1.7 Seismic drift effect (from Precast/Prestressed 2007, by permission). .......................... 5 

1.8 Cladding connections (from Precast/Prestressed 2007, by permission). ...................... 6 

1.9 In-plane rotation (from Precast/Prestressed 2007, by permmission). ........................... 6 

2.1 Prototype cladding connection from Georgia Tech (Pinelli et al. 1993). ................... 12 

2.2 Prototype connection hysteretic behavior (Pinelli et al. 1993). .................................. 12 

2.3 Cladding connection model (Craig et al. 1992). ......................................................... 12 

2.4 Energy time history results (Pinelli et al. 1995). ........................................................ 15 

2.5 Reduction in story drift when tapered tube connection were used                        

(Pinelli et al. 1995)............................................................................................................ 16 

2.6 A simple model of tuned mass damper....................................................................... 17 

2.7 Cladding system as an elastic distributed damping system. ....................................... 19 

3.1 Calculation model for natural vibration of connection. .............................................. 23 

3.2 Lump sum masses locations........................................................................................ 24 

 

vii



www.manaraa.com

 

3.3 Tributary areas of cladding masses at different locations........................................... 24 

3.5 Mode shapes of the three-story model. ....................................................................... 26 

3.6 El Centro earthquake ground acceleration.................................................................. 28 

3.7 El Centro earthquake pseudo acceleration response spectra....................................... 29 

3.8 IBC2000 response spectra........................................................................................... 29 

3.9 BOCA96 response spectra. ......................................................................................... 30 

3.10 Maximum moment diagram due to El Centro Earthquake. ...................................... 30 

3.11 Three-story maximum base shear versus different connection stifness.................... 33 

3.12 Three-story maximum moment in beams versus different connection stiffness. ..... 33 

4.1 Tapered tube connection (after Pinelli et al. 1993)..................................................... 37 

4.2 Plate connection. ......................................................................................................... 38 

4.3 Simple composite connection. .................................................................................... 38 

4.4 Finite element meshing of the tapered tube connection.............................................. 39 

4.5 3-D finite elements for tapered tube connection (from ANSYS). .............................. 39 

4.6 Finite element meshing of the plate connection. ........................................................ 40 

4.7 3-D finite elements for plate connection (from ANSYS). .......................................... 40 

4.8 Finite element meshing of simple composite connection. .......................................... 41 

4.9 3-D finite element of simple composite connection. .................................................. 42 

4.10 3-D contact element for simple composite connection (from ANSYS). .................. 42 

4.11 Bilinear kinematic hardening constitutive model for steel material. ........................ 43 

4.12 Neo-Hookean data of noeprene rubber used for composite connection ................... 44 

4.13 Boundary and loading condition for tapered tube connection .................................. 45 

4.14 Boundary and loading condition for plate connection.............................................. 45 

 

viii



www.manaraa.com

 

4.15 Boundary and loading condition for plate connection.............................................. 46 

4.16 Input lateral displacement cycles. ............................................................................. 46 

4.17 Hysteretic behavior of tapered tube connection from ANSYS................................. 48 

4.18 Hysteretic behavior of plate connection from ANSYS............................................. 49 

4.19 Hysteretic behavior of simple composite connection from ANSYS. ....................... 50 

4.20 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.3 in, rotation free........................................................................ 53 

4.21 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.5 in, rotation free........................................................................ 53 

4.22 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.7 in, rotation free........................................................................ 54 

4.23 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 1 in, rotation free........................................................................... 54 

4.24 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.3 in, rotation restrained. ............................................................. 55 

4.25 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.5 in, rotation restrained. ............................................................. 55 

4.26 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 0.7 in, rotation restrained. ............................................................. 56 

4.27 Von-Misses stresses of tapered tube connection at                                           

cladding deflection of 1 in, rotation restrained. ................................................................ 56 

4.28 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.3 in, rotation free........................................................................ 57 

 

ix



www.manaraa.com

 

4.29 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.5 in, rotation free........................................................................ 57 

4.30 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.7 in, rotation free........................................................................ 58 

4.31 Von-Misses stresses of plate connection at                                                       

cladding deflection of 1 in, rotation free........................................................................... 58 

4.32 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.3 in, rotation restrained. ............................................................. 59 

4.33 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.5 in, rotation restrained. ............................................................. 59 

4.34 Von-Misses stresses of plate connection at                                                       

cladding deflection of 0.7 in, rotation restrained. ............................................................. 60 

4.35 Von-Misses stresses of plate connection at                                                       

cladding deflection of 1 in, rotation restrained. ................................................................ 60 

5.1 Quadrilateral patches of frame member cross section. ............................................... 63 

5.2 “Steel 02” material model (from OPENSEES)........................................................... 65 

5.3 Response of non-linear spring with parameter set Steel02_01................................... 66 

5.4 Response of non-linear spring with parameter set Steel02_02................................... 66 

5.5 Response of non-linear spring with parameter set Steel02_03................................... 67 

5.6 Response of non-linear spring with parameter set Steel02_04................................... 67 

5.7 Response of non-linear spring with parameter set Steel02_05................................... 68 

5.8 “Hysteretic material” model (from OPENSEES) ....................................................... 69 

5.9 Response of non-linear spring with parameter set Hys01. ......................................... 70 

 

x



www.manaraa.com

 

5.10 Response of non-linear spring with parameter set Hys02. ....................................... 71 

5.11 Response of non-linear spring with parameter set Hys03. ....................................... 71 

5.12 Response of non-linear spring with parameter set Hys04. ....................................... 72 

5.13 Response of non-linear spring with parameter set Hys05. ....................................... 72 

5.14 Input non-linear springs into the frame model.......................................................... 74 

5.15 Frame and cladding absolute displacements at 3rd floor                                       

when tapered tube connections were used. ....................................................................... 75 

5.16 Cladding deflection at different floors                                                                   

when tapered tube connections were used. ....................................................................... 75 

5.17 Modified hysteretic behavior “HLOOP1”. ............................................................... 76 

5.18 Modified hysteretic behavior “HLOOP2”. ............................................................... 77 

5.19 Modified hysteretic behavior “HLOOP3”. ............................................................... 77 

5.20 Modified hysteretic behavior “HLOOP4”. ............................................................... 78 

5.21 Modified hysteretic behavior “HLOOP5”. ............................................................... 78 

5.22 Frame and cladding absolute displacements at 3rd floor                                       

when “HLOOP2” hysteretic behavior of connections was used. ..................................... 80 

5.23 Cladding deflection at different floors                                                                   

when “HLOOP2” hysteretic behavior of connections was used. ..................................... 80 

5.24 Panel gaps due to relative displacement of cladding panels at 3rd floor                

when “HLOOP2” hysteretic behavior of connections was used. ..................................... 81 

 

xi



www.manaraa.com

 

 CHAPTER 1 

1 INTRODUCTION  

1.1 Overview 

Precast concrete claddings have been widely used in the United States since the 

1920s. Cladding panels are attached to the frame structures and function as the facades of 

buildings (Fig. 1.1). Advantages of precast facade include a wide variety of styles, shapes 

and sizes, long-term durability that requires low maintenance over time and fast speed of 

erection that helps to reduce overall project cost. The PCI Architectural Precast Concrete 

Manual (Precast/Prestressed 2007), which is an industry guideline on the design of 

precast cladding elements for architects and engineers, provides an excellent overview of 

cladding systems. A brief review of these concepts are presented in Section 1.2. 

This research examines the seismic energy dissipation potential of steel structures 

by focusing on new types of specially engineered cladding-to-frame connections. 

Traditional connection details consist of rigid restraint of cladding panels, resulting in 

seismic designs that only consider the panel self-weight with the connection design left 

up to the precast fabricators and typical details. Beyond this, no contribution of the 

cladding panels to the behavior of a structure is considered. It is postulated that by 

considering these elements to actively participate in building response a more efficient 

and resilient structure could be designed which accurately captures the effects of non-

structural cladding elements on building behavior. 

There has been limited research studying the interaction between cladding 

systems and the structural frame during seismic events (Goodno & Palsson 1986, Henry 

& Roll 1986, Cohen & Powel 1993). It has been shown that if properly designed for 
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seismic loads, the cladding system may have the ability to dissipate energy, resulting in a 

reduction of structural responses under earthquakes (Pinelli et al. 1995). However, Pinelli 

et al. (1995) was focused on one building with a specific connection design.  A revisiting 

of these concepts in the context of a general approach to structural design is warranted. 

 

 

Cladding 

Figure 1.1 Building using cladding system (from Precast/Prestressed 2007, by 
permission). 

 

1.2 Current connection practice 

Cladding systems are divided by individual units (Fig. 1.2). Normally, the height 

of a panel unit does not exceed the floor-to-floor height, and the width of a panel unit 

does not exceed the building bay width. Panel geometry and joints must be configured 
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such that panels do not bear on one another and do not collide with one another or with 

the supporting structure during a seismic event or due to moisture or temperature effects.  

Cross-sections of typical wall claddings are shown in Figure 1.3. Basically, a 

cladding panel consists of an outer layer of concrete facing outside of the building, an 

intermediate insulation layer and an inner wallboard layer facing the inside of the 

building. The concrete layer contributes the most to the weight of the cladding panel.  

 

Figure 1.2 Cladding units (from Precast/Prestressed 2007, by permission). 

 
Figure 1.3 Typical cross-sections of cladding panels (from 

Precast/Prestressed 2007, by permission). 
 

Cladding panels are attached to the frame structures through connections. Panel 

attachment typically consists of two bearing connections and two lateral (or tieback) 
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connections (Fig. 1.4). Details of one specific type of both a bearing and tieback 

connection are shown in Figure1.5 and 1.6. Bearing connections are intended to transfer 

vertical loads to the support structure or foundation. Tieback connections are primarily 

intended to keep the precast concrete unit in vertical configuration and to resist wind and 

seismic loads perpendicular (out-of-plane) to the panel. They are designed to deform 

under lateral forces in the plane of the panel with minimal resistance. 

 

Figure 1.4 Typical connections arrangement (from Precast/Prestressed 2007, 
by permission). 

 

 

 

 

Figure 1.5 Bearing connection (from Precast/Prestressed 2007, by 
permission). 
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Figure 1.6 Tieback connection (from Precast/Prestressed 2007, by 
permission). 

 

The connection system determines panel movement in a seismic event. For 

cladding wall panels as shown in Figure 1.7, the panel is rigidly fixed to and translates 

with the floor beam at the panel bottom. The in-plane seismic force creates shear forces at 

the bearing connections, where these forces and gravity loads must be resisted. Some 

designers prefer to provide gravity support for the panel at the top and put the tieback 

connections at the bottom (Fig. 1.8). 

 

 

Figure 1.7 Seismic drift effect (from Precast/Prestressed 2007, by 
permission). 
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Figure 1.8 Cladding connections (from Precast/Prestressed 2007, by 
permission). 

 

If the bearing connections allow lift-off, the panel may rotate (“rocking”) when 

subjected to seismic forces (Fig. 1.9). The entire panel weight would then be carried on a 

single lower connection. Because the movement would occur in both directions, each 

bearing connection must be designed to carry the full weight of the element 

(Precast/Prestressed 2007). 

 

Figure 1.9 In-plane rotation (from Precast/Prestressed 2007, by 
permmission). 
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1.3 Scope of this study 

This research examines the seismic energy dissipation potential of steel structures 

by focusing on new types of specially engineered cladding-to-frame connections. Two 

different mechanisms of energy dissipation were examined on a reference structure. First, 

the cladding connection stiffness and mass of the precast cladding were investigated as a 

distributed system and designed to minimize structural response when subjected to 

moderate seismic events, in concept similar to multiple tuned mass dampers (MTMD). 

Second, hysteretic energy dissipation within the connection was investigated as a means 

of dissipating energy during larger seismic events. This latter mechanism is closer to that 

studied by Pinelli et al (1995). Hysteretic behavior of individual cladding-to-frame 

connections was obtained through non-linear time history analysis of 3-dimensional 

Finite Element models using ANSYS. This behavior was then input into OPENSEES 

models of a reference SAC 3-story building. Analysis included time history input and 

non-linear response including hysteretic behavior of cladding connections.  
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 CHAPTER 2 

2 LITERATURE REVIEWS 

2.1 Introduction 

In this chapter a literature review is presented. It consists of background research 

on the analysis of structures that include cladding components (Section 2.2), the 

effectiveness of engineered cladding connections (Section 2.3), tuned mass damping 

systems (Section 2.4), and the reference structure used in this research (Section 2.5). 

2.2 Research on cladding-structure interaction 

Henry and Roll (1986) attempted to evaluate the effects of cladding systems on 

the lateral displacements and dynamic characteristics of a reinforced concrete moment 

resisting frame when the cladding was incorporated into the analysis. They developed 

two computer models to analyze the structure and reported that once the cladding took 

part in the behavior of the structure, the natural period of vibration changed significantly. 

This change in behavior was caused by the cladding binding up against the frame due to 

inadequate clearance. 

Cohen and Powell (1993) studied the idea of utilizing steel cladding panels and 

energy-dissipating connections for seismic-resistant design. Hysteretic energy was 

dissipated when deformations in connections due to inter-story drift exceeded the elastic 

regime. The connections were hypothetical with assumed stiffness and yield strength. In 

their analytical study, one hypothetical steel-framed building was designed at three 

different levels of strength and stiffness when subjected to UBC design loads resulting in 

three bare frames with different member sizes. The building had five stories and three 

bays in one direction and five bays in the other direction. Details of the building and 
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design loads can be found in Cohen and Powell (1993). Three unclad frames were 

designed in accordance with UBC. The first frame was designed to meet strength 

requirements for 100 percent of the UBC loads. However it was assumed that there were 

deficiencies in this frame during construction and the frame was retrofitted by using 

structural cladding. The second frame was designed to meet the strength requirements for 

25 percent of UBC loads. The third frame was designed for gravity load only. The steel 

cladding panels were added to these three frames to provide additional strength and 

stiffness to meet the UBC drift and strength requirements. Steel cladding panels were 

considered as very stiff plates surrounded by beams and columns to provide additional 

lateral stiffness to the frame. A reference frame was designed to meet 100 percent of 

strength and stiffness requirements of the UBC without any structural contributions from 

the cladding. The inelastic cladding-to-frame connections were designed to be the 

primary source of energy dissipation due to yielding of connections.  

A two-dimensional computer model was constructed with connections modeled as 

zero-length elements with bilinear hysteretic behavior. Elastic stiffnesses of connections 

were selected based on inter-story drifts of the frame. Drift limits of the frame were used 

to determine yield displacements of connections. Two strain-hardening ratios for the 

stiffness of connections were used: 0.0 and 0.1. The analysis results showed that the 

fundamental periods of all three frames were altered when cladding panels and cladding-

to-frame connections were included in the model. Comparing the reference frame without 

cladding and the three clad frames, inter-story drifts were decreased up to 42% percent 

and the rotations of plastic hinges in beams were reduced up to 73.8% when cladding and 

connections were included.  

 

9



www.manaraa.com

 

However, there were some limitations in this research. The behavior of cladding-

to-frame connection was exclusively hypothetical. It was not proved that the assumed 

behavior of this connection is practical. Also, the attachment between the steel cladding 

panel and the frame in which the steel panels may provide additional stiffness to the 

frame was completely assumed without any practical configurations. 

Palsson et al. (1984) published their results on the influence of precast concrete 

cladding on the dynamic response of tall buildings. In this research, the influence of 

precast concrete cladding on the dynamic behavior of a 25-story building was 

investigated. A linear elastic computer model of the steel frame was developed. Stiffness 

from cladding panels was considered by matching analytical frequencies from the frame 

analysis with values obtained from vibration tests of the real building. The bare frame 

and the frame with additional stiffness from cladding were then analyzed with different 

ground motion records. Results including peak roof displacement and inter-story drift of 

the clad and unclad frame were compared. Results indicated that the cladding system 

significantly altered dynamic characteristics of the structure leading to different seismic 

structural responses. The cladding system may lead to a structure which is more or less 

dynamically sensitive to certain earthquake ground motions leading to higher or lower 

structural responses. The effect of the cladding system was dependent on dynamic 

characteristics of the frame and the earthquake applied.  

2.3 Effectiveness of engineered connections 

Pinelli et al. (1990, 1992, 1993, 1995 and 1996) and Craig et al. (1992) published 

analytical and experimental results on utilizing cladding-to-frame connections as a source 

of energy dissipation. In this research connections were specifically detailed to absorb 
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energy during an earthquake. The horizontal shear forces due to earthquakes deform the 

connections. When the deformation exceeds the elastic regime, the yielding of steel is 

initiated. Energy dissipation within connections as a result of this inelastic response could 

be used to transfer demands away from the steel structure. To evaluate the potential, 

physical tapered tube cladding-to-frame connections with varied geometry and different 

types of attachment (bolted or welded) were tested (Pinelli et al. 1993). General geometry 

of the proposed “optimal” connection can be seen in Figure 2.1. Properties evaluated for 

different connection types included stiffness, ductility, energy dissipation and fatigue 

behavior. Testing was quasi-static. Potential energy dissipating ability of this prototype 

connection was demonstrated through the physical test results as shown in Figure 2.2. 

The actual effect of the prototype connection on the structure subjected to seismic 

excitations was investigated through a two-dimensional computer simulation. The 

analysis used properties of a real test frame constructed by National Center for 

Earthquake Engineering Research (NCEER) (Reinhorn et al. 1989). This frame was 1:4 

scaled model representing a six-story three-bay moment resisting steel frame building. 

The frame was 216 in (546 cm) high and 144 in (366 cm) wide. The weight of the frame 

was 42 kips (19.051 kg). The unscaled periods for the two first modes were measured to 

be 0.85s and 0.26s.  

In the computer model, the cladding connections were represented by parallel-

series models made of a combination of linear springs and Coulomb slip elements as 

indicated in Figure 2.3 with properties based on the physical tests of connection 

hysteretic behavior (Craig et al. 1992). Results from the experiment and analytical model 

were in good agreement. 
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Figure 2.1 Prototype cladding connection from Georgia Tech (Pinelli et al. 1993). 
 

 

Figure 2.2 Prototype connection hysteretic behavior (Pinelli et al. 1993). 
 
 
 

 

Figure 2.3 Cladding connection model (Craig et al. 1992). 
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During a time history loading, the seismic energy input to the overall structure 

(Ei) is balanced by the relative kinetic energy (Ek); the recoverable elastic strain energy 

(Ee); the viscous damping energy (Ed) and the irrecoverable hysteretic energy (Eh) as 

shown in the following equation (Uang and Bertero 1990): 

                                        hdeki EEEEE +++=                                              (2.1) 

In Pinelli et al. (1993), the hysteretic energy Eh consisted of hysteretic energy in 

structural members Es and hysteretic energy in cladding connections Ec. To avoid 

yielding and damage to the structural members the researchers attempted to concentrate 

these in the cladding connections. Results showed that Eh was mostly dissipated by 

cladding connections. The effectiveness of energy dissipation of connections was 

measured by the ratio 
i

c

E
E

; where Ec was the total hysteretic energy dissipated in all 

cladding connections. 

Analysis results described in these terms are shown in Table 2.1. The “reference 

case” is the case of rigid connections that dissipate no energy. The ideal case is the case 

that the cladding panels are attached to the frame by hypothetical elastoplastic 

connections. The tapered case is the case that the cladding panels are attached to the 

frame by the prototype tapered connections. For all three earthquake records included, the 

frequencies of the structure were changed when the ideal or prototype connections were 

used. The critical finding was that all of the energy dissipation in structural members (Es) 

was completely eliminated for 2 of the 3 records, with 96% reduction in the other record. 

 The effectiveness of the connections in dissipating energy of structures depended 

on the location of the fundamental frequencies of the original structures with respect to 

the predominant frequencies of the earthquake ground motions (the frequencies at which 
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the peak of the response spectrum occurs). In the case of El Centro (predominant 

frequency was 1.5-1.8 Hz) and Chilean (predominant frequency was 1.2-1.4 Hz) ground 

motions, when the ideal or prototype tapered connections were used, the fundamental 

frequencies of the structures increased to be in between the range of predominant 

frequencies. This increased the overall energy input into the structure even though all 

inelastic energy dissipation was still transferred to the cladding connections. For 

example, in the Chilean case, the total energy input to the structure increased 55%, due to 

the change of frequencies when ideal or prototype tapered connections were used (Fig. 

2.4 a, b). On the contrary, for the Santa Barbara case, energy input to the structure was 

reduced by 56%, when the fundamental frequency of the original structure is higher than 

the predominant frequency of the earthquake (Fig. 2.4c, d). However, in all three cases 

story-drift was reduced (Fig 2.5a, b and c). It was seen that energy dissipating 

connections helped to reduce the seismic response. 

Table 2.1 Case study results from Georgia Tech (Pinelli at el. 1993). 
 125% El Centro 100% Chile 200% Santa Barbara 

 f 
(Hz) 

Es/Ei 
(%) 

Ec/Ei 
(%) 

f 
(Hz) 

Es/Ei 
(%) 

Ec/Ei 
(%) 

f 
(Hz) 

Es/Ei 
(%) 

Ec/Ei 
(%) 

Reference Case 1.11 37 0 1.1 34 0 1.1 32 0 
Ideal Case 1.39 0 75 1.4 4 70 1.4 0 79 
Tapered Case 1.35 0 74 1.4 4 70 1.3 0 64 

 

Through the Georgia Tech research, it was shown that engineered connection 

design can result in significant changes to structure behavior. Not only can the 

fundamental frequencies of the structure be changed but inelastic action can be 

transferred predominantly into the cladding connections, resulting in lower story drifts 

throughout the structure. However, there may be some practical problems associated with 
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the proposed connections. The effects of proposed connections were examined in only 

one analytical building. Response of cladding including displacements, and expected 

damage in connections under earthquakes were not presented. It may be difficult to 

determine which connections have already yielded and should be replaced after an 

earthquake. Replacement of damaged connections could be an expensive and time 

consuming repair. 

 

                            

a) Energy Time history-Conventional-Chile          b) Energy Time History-Tapered-Chile  

 

 

                                            

c) Energy Time history-Conventional-Santa Barbara     d) Energy Time History-Tapered-              
.                                                                                             Santa Barbara 

Figure 2.4 Energy time history results (Pinelli et al. 1995). 
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a) Drift Envelopes - El Centro 

 

 

b) Drift Envelopes – Chile 

 

 

c) Drift Envelopes - Santa Barbara 

Figure 2.5 Reduction in story drift when tapered tube connection were used (Pinelli 
et al. 1995) 

 

2.4 Tuned mass dampers and cladding systems 

From the literature review presented, cladding systems can have a significant 

effect on structural response, especially when engineered for this purpose. A mechanism 

to dissipate energy which based on the concept of tuned mass damper was evaluated in 

this research.  
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m1

k1 k2

u1

p sinωto
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u2

 

Figure 2.6 A simple model of tuned mass damper. 
 

Consider a very simple two-degree-of-freedom system as shown in Fig 2.6. The 

first mass m1 is roughly assumed to represent the mass of the structural frame. A cladding 

panel has its own mass (m2) and is shown connected to the frame by a connection which 

has a specific stiffness k2. This cladding panel and its connector system are similar to a 

tuned mass damper consisting of a spring k2 and a mass m2. When a harmonic 

force tpp o ωsin=  is applied, equations of motion for this two degree-of-freedom system 

that can be found in many dynamics textbooks are as follows: 
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2

m
m

=µ                                                            (2.5) 

From Equation 2.4a, u1o vanishes when . It is seen that a properly tuned 

mass damper can reduce the response amplitude of the system subjected to sinusoidal 

load to near zero. The concept remains valid when applying for more complicated 

systems with a large number of degrees-of-freedom. In practice, tuned mass dampers 

have been widely used for buildings subjected to wind induced vibrations.  

ωω =*
2

For this research the cladding systems are defined as two components: the heavy 

precast concrete panels and connections between cladding panels and the structural 

frame. The concrete panels are divided into individual units defined by the floor-to-floor 

height, and the bay width. Joints are provided between panels so that panels do not 

collide with one another during seismic events. If we consider each cladding panel as an 

individual oscillator attached to the frame through connections (Fig. 2.7), we have a 

structure which could be adapted into a multiple tuned mass damper system. It has been 

shown that the effectiveness of MTMD depends on the range of natural periods of the 

distributed oscillators (Xu & Igusa 1992, Abe & Fujino 1994). Energy dissipation is more 

effective when natural periods of MTMD are closely distributed around the natural period 

of the main structure (Igusa & Xu 1994). For cladding systems, the weights of cladding 

panels are usually governed by architectural factors and may not be largely varied. 

However, the stiffness of the cladding-to-frame connections can be varied through 

design, thereby modifying the natural periods of the MTMD. By engaging the cladding 

systems distributed throughout a structure as MTMD the response of the building under 

earthquakes may be modified. 
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M
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m

Building frame Cladding units

Cladding-to-frame
Connection

 

Figure 2.7 Cladding system as an elastic distributed damping system. 
 

2.5 Reference structures 

The frame to be investigated in this study is a moment-resisting frame used in the 

SAC project, co-developed by three organizations: The Structure Engineers Association 

of California (SEAOC), The Applied Technology Council (ATC) and California 

Universities for Research in Earthquake Engineering (CUREE). The SAC structures have 

been widely used in research on control problems of buildings under seismic excitations. 

Three different SAC structures were developed, a 3-story building, 9-story building and 

20-story building. The first natural periods of these structures are reported to be 1.01s, 

2.27s and 3.84s respectively (Ohtori et al. 2004). The SAC 3-story building was selected 

as the reference structure in this research to calibrate analysis results with other research 

that has been carried out and contribute new results to related research. This smaller 

structure was selected for initial research to simplify the models. Future research could 

apply results to the 9 and 20 story buildings. The building is 3-floor 4-bay moment 

resisting steel frame. Specifics of the structure are modeled after Ohtori et al. (2004). The 

frame geometry can be seen in Figure 2.8.  
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 CHAPTER 3 

3 CLADDING AS AN ELASTIC DISTRIBUTED DAMPING SYSTEM 

3.1 Introduction 

This chapter investigates the concept of utilizing cladding as an elastic distributed 

damping system. A computer model was developed in SAP2000 to initially investigate 

this potential. Since the MTMD was initially envisioned as a means to prevent yielding of 

structural members as well as cladding connections under moderate seismic loading this 

initial investigation only considered elastic material properties. Results were then 

investigated for non-linear material behavior as discussed in Chapters 4 and 5.  

3.2 Analysis model 

To evaluate the potential to utilize cladding system as MTMD, the reference 

structure was modeled in SAP2000 with cladding panels included. The structure was 

modeled as a 2D frame with all out-of-plane degrees-of-freedom restrained. Frame 

elements were assigned steel material with linear elastic behavior. The elastic modulus of 

steel was 29,000 ksi (199,947 Mpa). Member offset lengths were automatically 

calculated by SAP2000. Seismic masses of the frame consisted of the steel framing, floor 

slabs, ceiling/flooring, mechanical/electrical, partitions, roofing and a penthouse located 

on the roof and were taken as defined in Ohtori et al. (2004). Seismic masses were 

lumped at frame joints. Seismic mass at each joint of the first and second levels was 6.55 

kip-s2/ft (9.57 x 104 kg) and the third level was 7.10 kip-s2/ft (1.04 x 105 kg) (Fig. 3.1a). 

The structure details were as note in Ohtori et al. (2004).  

From this basic SAC frame, the connections between cladding panels and the 

frame were added as elastic frame elements with the length of 1 foot (0.3 m). The 
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cladding panels were modeled as lumped sum masses at the cladding end of each 

connection. Cladding masses were calculated as the sum of mass of quarters of 

surrounding panels (Fig. 3.2). The panels were assumed to have 6 in (0.15 m) thickness 

of concrete with weight density of 145 lb/ft3
 (2323 kg/m3). Mass of cladding panel at a 

joint surrounded by 4 quarters of cladding panel was calculated as 

(0.145kip/ft3)(0.5ft)(13ft)(30ft)/(32.2ft/sec2) = 0.88 kip-sec2/ft (1.29 x 104 kg). To 

account for other components of the wall assemblies, a mass value of 1 kip-sec2/ft (1.46 x 

104 kg) was used.  

The boundary conditions at base of columns were fixed. At each frame joints, 

only movements in the plane of the frame were allowed. Rotations at ends of cladding 

elements were allowed.  

The structure was first analyzed with no cladding masses to calibrate results with 

Ohtori et al. (2004) and then analyzed with masses and varying lateral stiffness in the 

cladding connections included. One-hundred modes of vibration were considered in the 

dynamic analysis. This guaranteed sufficient modes of vibration were considered with the 

sum of modal participations was almost 100%. The lateral stiffness was varied by 

changing the connection thickness, while maintaining all other dimensions and properties 

constant. The weightless connection cross section was arbitrarily assumed to be 

rectangular with a height of 1 foot (0.15 m) and varying width from 0.018 ft (0.005 m) to 

very large (approaching rigid) values.  It is important to note that any connection with a 

similar lateral stiffness would provide similar results, so at this stage a simple rectangular 

section was adopted. 
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Natural vibration period of the connection itself was calculated as a cantilever 

beam with one end fixed and the other end located a lump sum mass representing the 

cladding panel (Fig. 3.1). As noted previously, the connection boundary conditions were 

simplified at this stage of analysis. Actual conditions would be dependent on the cladding 

to connection detailing. Similar stiffness could be obtained with different boundary 

conditions combined with other lengths or cross sectional properties. 

 

1 '

A A

Varies 0.018' - 10.000'

A - A

Cladding panel

Connection

1 '
 

Figure 3.1 Calculation model for natural vibration of connection. 
 

3.3 Analysis results and discussion 

Without cladding masses, the first three periods of the structure were found to be 

0.97s, 0.32s and 0.17s. These results agree with the analysis results by Ohtori et al. 

(2004) (1.01s, 0.33s and 0.17s respectively). Variations are likely due to slightly different 

structure details used such as the length of member offset, material properties and the 

conversion of unit systems. These details were not available in Ohtori et al. (2004). 
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Figure 3.2 Lump sum masses locations.  

 

Tributary area of mass of
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Figure 3.3 Tributary areas of cladding masses at different locations. 
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Mode 2 (0.32s) 

 

Mode 3 (0.17s) 

 

Mode 1 (0.97s) 

 
Figure 3.5 Mode shapes of the three-story model. 

 

Table 3.1 presents the dynamic analysis results of the structure as the lateral 

stiffness of the cladding-to-frame connections was varied. The free vibration of the 

structure changed when the cladding panels were introduced.  When the lateral stiffness 

of the connections was 1.04E+03 kip/ft (15.2E+03 kN/m) or larger, free vibration of the 

structure was not affected. When the stiffness of the connections varied from 1.04E+03 

kip/ft (15.2E+03 kN/m) to 1.04E+09 (15.2E+09 kN/m) kip/ft, the first three periods did 

not vary more than 1%. The mass participation ratios also mostly remained similar. 

Table 3.1 Three-story dynamic analysis results. 

Connection 
stiffness 
(kip/ft) 

Natural 
Period of 
Cladding 

Units  
(s) 

1st  
Period

(s) 

Participation
Ratio 

2nd  
Period

(s) 

Participation
Ratio 

 3rd  
Period

(s) 

Participation 
Ratio 

Sum of 
participation 
of first three 

modes 

∆∗ 
(%) 

 

No 
cladding - 0.97 0.84 0.32 0.13 0.17 0.02 0.990 - 

1.04E+09 0.000 1.01 0.82 0.33 0.12 0.18 0.02 0.967 99.98
1.31E+08 0.001 1.01 0.82 0.33 0.12 0.18 0.02 0.969 99.95
1.04E+06 0.006 1.01 0.82 0.33 0.12 0.18 0.02 0.970 99.39
1.31E+05 0.017 1.01 0.82 0.33 0.12 0.18 0.02 0.970 98.27
1.63E+04 0.049 1.01 0.82 0.33 0.12 0.18 0.02 0.970 95.11
1.04E+03 0.194 1.01 0.82 0.34 0.12 0.17 0.01 0.957 80.68

130.50 0.550 1.01 0.82 0.31 0.09 0.17 0.02 0.937 45.78
66.82 0.769 1.03 0.81 0.31 0.11 0.17 0.02 0.934 25.37
57.29 0.830 1.04 0.79 0.31 0.11 0.17 0.02 0.915 20.07
44.76 0.939 1.07 0.68 0.32 0.11 0.17 0.02 0.815 11.86
34.21 1.074 1.14 0.41 0.96 0.37 0.32 0.11 0.895 5.50 
28.19 1.183 1.22 0.25 1.00 0.48 0.32 0.11 0.845 18.66
22.92 1.312 1.34 0.16 1.04 0.45 0.32 0.11 0.723 26.74
16.31 1.556 1.57 0.10 0.93 0.51 0.32 0.11 0.722 66.89
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Connection 
stiffness 
(kip/ft) 

Natural 
Period of 
Cladding 

Units  
(s) 

1st  
Period

(s) 

Participation
Ratio 

2nd  
Period

(s) 

Participation 
Ratio 

3rd  
Period

(s) 

Participation 
Ratio 

Sum of 
participation 
of first three 

modes 

∆∗ 
(%) 

 

11.12 1.884 1.90 0.08 0.98 0.39 0.32 0.11 0.580 92.16
8.35 2.174 2.18 0.07 0.95 0.66 0.32 0.11 0.843 128.12
6.09 2.546 2.56 0.06 0.96 0.72 0.32 0.11 0.891 164.65

∗ ∆ = Difference between period of the highest participation and natural period of cladding units. 

If the lateral stiffness of the connection was low enough (less than 34.21 kip/ft 

(499.2 kN/m), it is seen that the structural dynamic properties were significantly 

different. When the stiffness of the connection reduced from rigid to 22.92 kip/ft (334.5 

kN/m), the first period lengthened 30%, increasing from 1.01s to 1.34s. The mass 

participation of the first mode of vibration changed significantly, reducing from 82% to 

16%. The second and the third modes were also affected when the connection stiffness 

was varied in this range.  

When the connection stiffness varied from 22.92 kip/ft (334.5 kN/m) to 6.09 

kip/ft (88.9 kN/m), the first period of the structure was very close to the natural period of 

the cladding/connection system. The mass participation of the first mode in this range 

also reduced significantly. The vibration of the first mode appeared to represent the 

vibration component of the cladding system rather than the structural frame. In other 

words, a new period was introduced that was similar to the cladding period. The 

fundamental period of the frame was represented by the second mode with mass 

participation in this mode larger than other modes. 

The dynamic behavior of the structure under seismic excitation was then 

investigated. The structure was analyzed with the El Centro earthquake ground motion 

acceleration (North-sourth component recorded on May 18, 1940) with PGA of 0.35g 
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(Fig. 3.6 and 3.7), the IBC 2000 design response spectrum (Fig. 3.8) and the BOCA 1996 

design response spectrum (Fig. 3.9). Parameters of design response spectra were selected 

so that results from response spectrum analysis were comparable with results from time 

history analysis. Sds of design response spectra was selected as 1g based on maximum 

spectral acceleration of El Centro earthquake ground motion of 0.91g. The purpose of the 

seismic analysis was to determine the effect of the connection lateral stiffness on the 

structure response. The response modification coefficient used was R = 1, and the 

deflection amplification factor was Cd = 1, to gain a reference value for elastic response. 

These analyses were performed as a general investigation only. Resulting maximum base 

reactions and maximum moments in the structural members for each earthquake 

excitation can be seen in Table 3.2. An example of maximum moment diagram due to 

seismic excitation is shown in Figure 3.10. 
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Figure 3.6 El Centro earthquake ground acceleration. 
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Figure 3.7 El Centro earthquake pseudo acceleration response spectra. 
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Figure 3.8 IBC2000 response spectra. 
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Figure 3.9 BOCA96 response spectra. 
 

 

Figure 3.10 Maximum moment diagram due to El Centro Earthquake. 

Table 3.2 Three-story seismic response 
El Centro IBC 2000 BOCA96 

Connection 
stiffness 
(kip/ft) 

Base 
Reaction 

(Kip) 

Moment 
Max 

(Kip-ft) 

Base 
Reaction 

(Kip) 

Moment 
Max 

(Kip-ft) 

Base 
Reaction 

(Kip) 

Moment 
Max 

(Kip-ft) 

66.82 1555.74 2546.29 1226.03 2086.48 1452.86 2518.85 
57.29 1455.34 2379.86 1199.39 2028.81 1422.40 2454.57 
44.76 1267.24 2014.12 1106.87 1842.32 1311.70 2236.20 
34.21 1171.53 1860.44 992.73 1632.98 1164.14 1970.85 
28.19 1088.18 1720.53 970.70 1602.13 1131.07 1923.97 
22.92 1046.75 1649.53 953.71 1570.28 1102.34 1873.24 
16.31 1180.06 1831.32 1005.41 1671.07 1150.75 1965.96 
11.12 1390.16 2205.00 1060.93 1779.10 1215.54 2089.67 
8.35 1499.03 2394.49 1137.15 1924.54 1306.10 2258.77 
6.09 1566.36 2514.78 1183.08 2013.33 1363.88 2368.32 
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Results are plotted in Figure 3.11 and 3.12 in the range of the connection stiffness 

of 6.09 kip/ft (88.9 kN/m) to 66.82 kip/ft (975.1 kN/m). For all three seismic excitations, 

the base reaction and the maximum moment reduce to the minimum values when the 

stiffness of the connection was 22.92 kip/ft (334.5 kN/m). It is important to note that 

structural response was reduced the most when the stiffness of cladding-to-frame 

connections in a range where period of cladding units was similar to the fundamental 

period of the structural frame. Base shear and maximum moments in critical structural 

elements were reduced as much as 40% and 28% respectively. Dissipation of energy by 

the cladding system was most effective when natural periods of cladding units were 

similar to the fundamental period of the frame (Fig. 3.11 and 3.12).  

In order to obtain 40% reduction in base shear and 28% reduction in maximum 

moment, the long connections were subjected to maximum relative cladding 

displacements to the frame of 14.6 in (0.37 m) and 13.2 in (0.34 m) respectively. These 

are not likely to be practical values, so means of reducing deflections were investigated. 

Reducing the length of the connections while maintaining the same connection overall 

stiffness was not an effective control of displacements. The length of connections was 

reduced to 6 in (0.15 m) while maintaining a stiffness of 33.41 kip/ft (487.6 kN/m). The 

maximum relative displacement between cladding and the structural frame decreased 

from 14.6 in (0.37 m) to 12.24 in (0.31 m) with approximately the same amount of base 

shear reduction. Smaller effective connection lengths could be achieved within a longer 

connection by providing a weakened zone in an otherwise stiff connection. This would be 

required to maintain clearance for insulation and other construction requirements. 

Alternatively, by adding more mass to cladding panels, stiffer connections could be used 

 

31



www.manaraa.com

 

to obtain a similar cladding-connection system fundamental period. As was noted 

previously, cladding weight is not likely to have a large amount of variation. However, 

additional mass could be incorporated by including a section of floor near the edge of the 

structure in the precast element. In one case with cladding masses doubled by assuming 

the inclusion of a portion of the floor masses, a 24% of reduction in base shear was 

obtained with relative maximum cladding displacement of 6.3 in (0.16 m). While a 

significant reduction in relative displacement was realized, this is still quite large and 

may not be practical. However, it was shown that there is the potential to mitigate 

deflections through the assumption of different design scheme while still reducing forces 

on the structural members.  

Bending stresses in connections due to self weight of cladding panels and due to 

seismic force were calculated. In case of the connection which had stiffness of 22.92 

kip/ft (334.5 kN/m), maximum bending stress due to self weight was 47.9 ksi (330.3 

Mpa). Bending stress due to seismic force in lateral direction was 188.9 ksi (1302.4 Mpa) 

(Table 3.3). Stresses were high with these simplistic connections. 
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Figure 3.11 Three-story maximum base shear versus different connection stifness 
 

 

 

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70 80

Connection Stiffness (kip/ft)

M
ax

im
um

 M
om

en
t (

ki
p-

ft)

El Centro

IBC Spectrum

BOCA SpectrumTcladding = 1.6s - 1.1s

 

Figure 3.12 Three-story maximum moment in beams versus different connection 
stiffness. 
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Table 3.3 Bending stresses in connections. 

Connection 
stiffness 
(kip/ft) 

Bending stress due 
to self weight  

(ksi) 

Bending stress due 
to seismic force 

(ksi) 

1.04E+09 0.13 0.00 
1.31E+08 0.27 0.00 
1.04E+06 1.34 0.08 
1.31E+05 2.68 0.32 
1.63E+04 5.37 1.30 
1.04E+03 13.42 10.27 

130.50 26.83 31.64 
66.82 33.54 72.57 
57.29 35.31 108.15 
44.76 38.33 157.47 
34.21 41.93 157.08 
28.19 44.72 127.46 
22.92 47.92 188.92 
16.31 53.67 176.87 
11.12 60.98 207.93 
8.35 67.08 180.69 
6.09 74.54 99.25 

 

3.4 Conclusion 

The potential to utilize cladding systems as an elastic distributed damping system 

was shown, although displacements and also stresses were not controlled with the 

simplistic connection evaluated. Base shear was reduced as much as 40 percent and 

demands on structural elements were reduced as much as 28%. It is seen that cladding 

systems may have positive contributions to the behavior of structures when subjected to 

earthquake loads. Further research is necessary to control deflection and strength of 

connections used for energy dissipating purposes. 
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CHAPTER 4 

4 HYSTERETIC ENERGY DISSIPATION CONNECTIONS 

4.1 Introduction 

Hysteretic energy dissipation within cladding-to-frame connections was studied as 

an additional means to utilize the cladding system as a source of seismic energy 

dissipation. During large seismic events, inelastic deformations of connections result in 

dissipation of energy through hysteretic damping. Promising results were reported in 

previous research (see Chapter 2: Literature reviews). Craig et. al. (1992) and Pinelli et 

al. (1993, 1995) reported the potential to utilize hysteretic energy dissipation within 

cladding-to-frame connections during earthquakes. Proposed energy dissipating 

connections were tested to evaluate several properties including stiffness, ductility, 

energy dissipation and fatigue behavior (Craig et al. 1992). Hysteretic behavior of the 

proposed connections was then incorporated into a computer model of structure. 

Proposed connections were reported to significantly reduce seismic responses of the 

structure (Pinelli et al. 1995). However, the effects of proposed connections were 

examined in only one analytical building. Response of cladding including displacements, 

and expected damage in connections subjected to earthquake load were not presented. 

The use of hysteretic energy dissipation in cladding connections is also a focus of 

this research. To obtain hysteretic behavior of connections, non-linear time history 

analysis of 3-dimensional Finite Element (FEM) models of connections was performed 

using ANSYS. The resulting hysteretic responses were then input into structural models 

in OPENSEES of the SAC frame structure previously described. The objective of this 
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research was to define a methodology for evaluating connection performance and 

highlight potential benefits and areas needing further study. 

Three types of connections were modeled in ANSYS: the tapered tube connection 

previously studied by Pinelli et al. (1993) (Fig. 4.1), the plate connection used in the 

elastic modeling of Chapter 3 (Fig. 4.2) and the simple composite connection (Fig. 4.3). 

The tapered tube connection which was based on Pinelli et al. (1993) was used for 

calibration of results to a complex geometry connection. The plate connection which had 

the same dimensions as the connection resulting in the most structural response reduction 

in Chapter 3 was analyzed for post yielding comparison purposes. A simple composite 

connection was modeled to initially investigate the potential to use composite material to 

develop hysteretic energy dissipation connections which result in desired hysteretic 

behavior. 

4.2 Finite element modeling of the hysteretic energy dissipation connection 

Finite element meshing of the tapered tube connection can be seen in Figure 4.4. 

To correctly represent the geometry complexity of the model, 3-D tetrahedral solid 

elements (SOLID187) were used. This element is suitable for structures with irregular 

geometry. This element is defined by 10 nodes with 3 degrees-of-freedom at each node. 

This element has the capability of taking into account plasticity, hyper-elasticity, creep, 

stress stiffening, large deflection and large strain effects (ANSYS 11.0 help 

documentation). The tapered tube connection was modeled by 1828 elements which were 

defined by 4117 nodes. 

Finite element meshing of the plate connection can be seen in Figure 4.6. The 

plate connection was modeled by 3-D shell elements (SHELL181). Each element is 
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defined by 4 nodes with six degrees-of-freedom at each node (Fig. 4.7). This element is 

suitable for thin to moderately thick shell-shape structures. This element is appropriate 

for non-linear, large rotation and large deformation analysis (ANSYS 11.0 help 

documentation). The plate connection was modeled by 906 elements defined by 992 

nodes. 
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Figure 4.1 Tapered tube connection (after Pinelli et al. 1993). 
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Figure 4.2 Plate connection. 
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Figure 4.3 Simple composite connection. 
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Figure 4.4 Finite element meshing of the tapered tube connection. 
 

 

 

Figure 4.5 3-D finite elements for tapered tube connection (from ANSYS). 
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Figure 4.6 Finite element meshing of the plate connection. 
 

 

 

Figure 4.7 3-D finite elements for plate connection (from ANSYS). 
 

Finite element meshing of the simple composite connection can be seen in Figure 

4.8. The simple composite connection was modeled by 3-D 20-node solid elements 

(SOLID186). This element is defined by 20 nodes with 3 degrees-of-freedom at each 

node (Fig. 4.9). This element has capability of taking into account plasticity, hyper-
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elasticity, creep, stress stiffening, large deflection and large strain effects (ANSYS 11.0 

help documentation). This element is also able to simulate deformations of nearly 

incompressible elastoplastic materials and fully incompressible hyperelastic materials 

which was necessary to model the two outer layers of rubber. Contact regions between 

different material layers were modeled by 3-D surface-to-surface contact elements 

(CONTA174) (Fig. 4.10). This element is suitable to model contact and sliding behavior 

between 3-D surfaces. For preliminary modeling it was assumed that the materials could 

be fully bonded to each other, so this would be appropriate. Further modeling could be 

performed to evaluate partial bond conditions. These contact elements have the same 

geometric characteristics as the solid element face which they are connected (ANSYS 

11.0 help documentation). The contact elements were assigned frictionless properties. 

The simple composite connection was modeled by 960 3-D 20-node solid elements and 

1536 3-D surface-to-surface contact elements.  

 

 

Figure 4.8 Finite element meshing of simple composite connection. 
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Figure 4.9 3-D finite element of simple composite connection. 
 

 

 

Figure 4.10 3-D contact element for simple composite connection (from ANSYS). 
 

Bilinear kinematic hardening constitutive model was used for the steel material (Fig. 

4.11). Yield stress of steel was 46 ksi (317.2 Mpa). Ultimate stress of steel was 75 ksi 

(517.1 Mpa). Young’s modulus of steel was 29,000 ksi (199,947.6 Mpa). Tangent 

modulus was 29 ksi (199.5 Mpa). Poisson’s ratio of steel was 0.3. Noeprene rubber was 

used for the simple composite model. Default neo-hookean data of rubber from ANSYS 

were used (Fig. 4.12). These materials were only used as conceptual possibilities, results 
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from OPENSEES modeling (Chapter 5) can determine desired hysteretic connection 

behavior characteristics which could then be approximated by composite connections of 

varying geometry and materials. 

 

Figure 4.11 Bilinear kinematic hardening constitutive model for steel material. 
 

For all three connections, boundary conditions assigned at the ends of connections 

were modified to determine their influence on behavior. The connection’s surface 

attached to the frame was fully fixed. This was done by restraining all degrees-of-

freedom of all nodes on the surface. The connection‘s surface attached to cladding panels 

was rotationally restrained or rotationally free (Fig. 4.13 - 4.15). Rotation was restrained 

by assigning zero out-of-plane displacements to the surface during the loading process. 

All three connections were subjected to quasi-static cycles of lateral displacements of 

different amplitudes (Fig. 4.16). To apply these cycles of displacements, the analysis 
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process was divided into 40 steps. Every 4 steps accommodated 1 cycle of displacement: 

zero to maximum, maximum to zero, zero to minimum and minimum to zero. Sub-steps 

for inelastic analysis were automatically defined by ANSYS with the maximum number 

of sub-steps set at 1000. Displacements were applied on the cladding surface of the 

connections. No vertical gravity load was included. Ultimate applied displacement was 1 

inch. Large deformation was considered in the analysis. During the analysis, reaction 

forces, stresses and deformations were recorded.  

 

Figure 4.12 Neo-Hookean data of noeprene rubber used for composite connection 
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Figure 4.13 Boundary and loading condition for tapered tube connection 
 

 

 

 

 

Figure 4.14 Boundary and loading condition for plate connection 
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Figure 4.15 Boundary and loading condition for plate connection 
 

 

 

Figure 4.16 Input lateral displacement cycles. 
 

4.3 Hysteretic responses of connections 

Hysteretic responses of the tapered tube connection can be seen in Figure 4.16. 

Wide, stable loops were observed without stiffness degradation or strength deterioration. 

This confirmed the experimental results obtained by Pinelli et al. (1995) (see Figure 2.2). 

It was found that hysteretic behavior of connections depended on the rotational boundary 

condition at the cladding (comparing Figure 4.16a and b). In the case that rotation at the 

 

46



www.manaraa.com

 

cladding side of connection was restrained, shear reaction of the connection at 

displacement of 1 in (0.025 m) was 8.38 kips (37.3 kN). In the case that such rotation was 

free, the shear reaction of the connection at a displacement of 1 in was 3.77 kips (16.8 

kN). Pinelli et al. (1995) reported experimental values of 4.2 kips (18.7 kN). At 

displacements of 0.4 in (0.01 m), all results (2 models and previous experimental work) 

indicate a shear of approximately 4 kips (17.8 kN). Hardening of the hysteretic response 

was significantly higher in the analytical model when rotation at cladding side of 

connection was restrained. Laboratory tests by Pinelli et al. (1995) resulted in a slight 

hardening effect up to a displacement of 1 in (0.025 m) between these two conditions, 

representing the difficulty of obtaining a truly fixed condition in an actual test setup. 

However, it is unclear what degree of fixity would be available in a full cladding system, 

so experimental testing of such components would be worthwhile. Further modeling 

could then include spring restraints rather than fully restrained boundary conditions to 

match the condition observed in testing. It is noted that the experimental results showed 

significant hardening when testing continued to 2.5 in (0.063 m). 

Hysteretic responses of the plate connection can be seen in Figure 4.17. Note the 

different scales of the two graphs in Figure 4.17a and 4.17b. Much higher hardening 

effect than the case of tapered tube connection was observed when rotation at the 

cladding side of connection was restrained. The additional hardening was due to stress 

stiffening of the model. This effect normally occurs in thin structures with bending 

stiffness very small compared to axial stiffness and couples the in-plane and transverse 

displacements (ANSYS 11.0 help documentation). The effect was present only when 

large deformation effects were considered in the analysis. When large deformation effects 
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were considered, ANSYS accounted for the stress stiffening effect by adding an 

additional stiffness matrix to the regular non-linear stiffness matrix in order to give the 

total stiffness (ANSYS help 11.0 documentation). 

 

 

(a) Rotation free 

 

(b) Rotation restrained 

Figure 4.17 Hysteretic behavior of tapered tube connection from ANSYS. 
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(a) Rotation free 

 

(b) Rotation restrained 

Figure 4.18 Hysteretic behavior of plate connection from ANSYS. 
 

Hysteretic responses of the simple composite connection can be seen in Figure 

4.18. The composite connection provided wider loop with more hardening effect than the 

plate connection when they were both rotationally free. The hardening effect in the 
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simple composite connection was also significantly higher when rotation at cladding side 

of the connection was restrained.  

 

 

(a) Rotation free 

 

(b) Rotation restrained 

Figure 4.19 Hysteretic behavior of simple composite connection from ANSYS. 
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Von-Misses stresses at connection deflections of 0.3 in (7.62 mm), 0.5 in (12.7 

mm), 0.7 in (17.78 mm) and 1 in (25.4 mm) were shown in Figure 4.20 - 4.35. For the 

tapered tube connection, when rotation at the cladding side of connection was not 

restrained (Fig. 4.20 - 4.23), at the connection deflection of 0.3 in, yielding stresses (46 

ksi) (317.2 Mpa) were not observed at most locations (Fig. 4.20). High stresses were 

observed near the tapered locations of the beams. When the deflection of connection 

increased, stresses increased and yielding stresses started to appear near the tapered 

locations of the beams. At the connection deflection of 1 in (25.4 mm), after yielding 

occurred near the tapered locations of the beams, yielding stresses also appeared near the 

ends of the beams (Fig. 4.23). 

For the tapered tube connection, when rotation at the cladding side of connection 

was restrained (Fig. 24 - 4.27), locations of yielding stresses were different with the case 

that such rotation was not restrained. Yielding stresses appeared earlier. At the 

connection deflection of 0.3 in (7.62 mm), yielding stresses (46 ksi) (317.2 Mpa) started 

to appear near the ends of the beams (Fig. 4.24). At the deflection of 0.5 in (12.7 mm), 

yielding stresses were observed at most areas near the ends of the beams. After yielding 

occurred at the end of the beam, it developed to the middle of the beam (Fig 4.27). 

For the plate connection, when rotation at the cladding side of connection was not 

restrained (Fig. 4.28 - 4.31), at the deflection of 0.3 in (7.62 mm), high stress areas were 

near the fixed end of the plate. Stresses did not reach yielding point yet. When deflection 

was 0.5 in (12.7 mm), yielding stresses appeared in similar areas. When deflection 

continued to increase to 1 in (25.4 mm), stresses increased and areas of highest stresses 

were still located near the fixed end of the plate. 
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For the plate connection, when rotation at the cladding side of connection was 

restrained (Fig. 4.32 - 4.35), at the deflection of 0.3 in (7.62 mm), high stress areas were 

observed at both ends of the connection. Stresses reduced uniformly from 2 ends to the 

middle of the plate. At the deflection of 0.5 in (12.7 mm), yielding occurred. Yielding 

stresses were located near the fixed end of the connection. At the deflection of 0.7 in 

(17.78 mm), yielding stresses were still observed near the fixed end of the connection. 

There was a slight reduction in maximum stress from 54.2 ksi (373.7 Mpa) to 53.6 ksi 

(369.6 Mpa). At the deflection of 1 in (25.4 mm), yielding stresses developed from the 

fixed end of the connection to more than two-third of the total length of the connection. 

Maximum stress was reduced from 53.6 ksi (369.6 Mpa) at the deflection of 0.7 in (17.78 

mm) to 46.9 ksi (323.4 Mpa) at the deflection of 1 in (25.4 mm). 

4.4 Conclusion 

A method to obtain hysteretic behavior of different types of connections using 3-

dimensional FEM models in ANSYS was presented. Analytical results indicated that 

response of connections is significantly dependent on rotational boundary conditions at 

the ends of connections. Further investigations on the actual rotational conditions of 

connections in a full system by testing and using spring restraints in analytical models 

rather than fully restrained boundary conditions would be worthwhile. Obtained 

hysteretic responses were then input into structural models in OPENSEES of the 

reference structure to examine the effectiveness of hysteretic energy dissipating 

connections.  
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Figure 4.20 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.3 in, rotation free. 

 

 

 

 

                         

Figure 4.21 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.5 in, rotation free. 
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Figure 4.22 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.7 in, rotation free. 

 

 

 

 

                         

Figure 4.23 Von-Misses stresses of tapered tube connection at cladding deflection of 
1 in, rotation free. 
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Figure 4.24 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.3 in, rotation restrained. 

 

 

 

 

                         

Figure 4.25 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.5 in, rotation restrained. 
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Figure 4.26 Von-Misses stresses of tapered tube connection at cladding deflection of 
0.7 in, rotation restrained. 

 

 

 

 

                         

Figure 4.27 Von-Misses stresses of tapered tube connection at cladding deflection of 
1 in, rotation restrained. 

 

56



www.manaraa.com

 

  

            

Figure 4.28 Von-Misses stresses of plate connection at cladding deflection of 0.3 in, 
rotation free. 

 

 

 

 

            

Figure 4.29 Von-Misses stresses of plate connection at cladding deflection of 
0.5 in, rotation free. 
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Figure 4.30 Von-Misses stresses of plate connection at cladding deflection of 0.7 in, 
rotation free. 

 

            

Figure 4.31 Von-Misses stresses of plate connection at cladding deflection of 1 in, 
rotation free. 
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Figure 4.32 Von-Misses stresses of plate connection at cladding deflection of 0.3 in, 
rotation restrained. 

 

 

 

 

            

Figure 4.33 Von-Misses stresses of plate connection at cladding deflection of 
0.5 in, rotation restrained. 
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Figure 4.34 Von-Misses stresses of plate connection at cladding deflection of 0.7 in, 
rotation restrained. 

 

 

 

 

             

Figure 4.35 Von-Misses stresses of plate connection at cladding deflection of 1 in, 
rotation restrained. 
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 CHAPTER 5 

5 EFFECTS OF HYSTERETIC ENERGY DISSIPATION CONNECTIONS ON 

THE SAC 3-STORY BUILDING 

5.1 Introduction 

This chapter presents a non-linear analysis of the reference frame including 

hysteretic behavior of cladding-to-frame connections to investigate the effectiveness of 

total energy dissipation in connections under earthquake loading. Hysteretic behavior of 

connections obtained from ANSYS analysis (Chapter 4) was input into a non-linear SAC 

3-story frame model developed in OPENSEES. Both geometric and material non-

linearity of the frame were considered. Results from non-linear time history analysis of 

the frame without cladding-to-frame connections were calibrated to Ohtori et al. (2004) 

to assure the validity of the analysis model. Connections were included in the model as 

non-linear springs connecting coincident frame and cladding mass joints which were 

defined as having equivalent hysteretic behavior to that obtained from the FEM analysis. 

A series of hypothetical connection response (defined through hysteretic behavior 

characteristics) were also examined for their effects on seismic responses of the structure. 

Analysis results have demonstrated the potential to utilize hysteretic energy dissipation 

connections to reduce the response of structures subjected to earthquakes. 

5.2 Non-linear model of the SAC 3-Story building 

Non-linear analysis of structures subjected to earthquakes is necessary because of 

the fact that large deformations and inelastic material behaviors are expected to occur in 

the structures during earthquakes. A non-linear model of the SAC 3-story building was 

developed in OPENSEES - an advanced computer program for earthquake simulation. 
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The model was able to take into account both geometric and material non-linearity and is 

extremely flexible in allowing true hysteretic behavior of elements.  

Details of the SAC 3-story building were described in Chapter 3. Frame members 

were modeled by non-linear frame elements with 5 integration points along each element 

to account for geometric non-linearity. This frame element is flexibility-based using force 

interpolation functions instead of displacement interpolation functions as commonly used 

in a stiffness-based frame element. This element has several advantages over the 

stiffness-based element including less discretization errors and exactly satisfied 

governing equations. Background and formulation of this element can be found in 

Neuenhofer and Filippou (1997). The command to define this element is as follows (after 

OPENSEES Command Language Manual): 

“element nonlinearBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag 

$transfTag <-mass $massDens> <-iter $maxIters $tol>” 

In which: 

• $eleTag: unique element object tag 

• $iNode $jNode: end nodes 

• $numIntgrPts: number of integration points along the element. 

• $secTag: identifier for previously-defined section object 

• $transfTag: identifier for previously-defined coordinate-transformation  

object 

• $massDens: element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0) 
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• $maxIters maximum number of iterations to undertake to satisfy element 

compatibility (optional, default=1) 

• $tol tolerance for satisfaction of element compatibility (optional, 

default=10-16) 

 To model material non-linear behavior, cross sections of frame members were 

broken down into quadrilateral patches. There were 64 patches for each flange and 32 

patches for the web. Patches were then assigned uni-axial bilinear kinematic hardening 

material behavior with parameters commonly used for structural steel. This was one of 

the “fiber” methods to model cross sections in OPENSEES. Elastic modulus of steel was 

29,000 ksi (199,947 Mpa). Tangent modulus was 29 ksi (199.95 Mpa). Yield stress was 

50 ksi (344.7 Mpa). Poisson’s ratio was 0.3.  

 

Figure 5.1 Quadrilateral patches of frame member cross section. 
 

To ensure the validity of the modeling of the structure, the non-linear frame was 

analyzed with El Centro earthquake ground motion previously described in Chapter 3. 

Results were compared with Ohtori’s analysis (2004). It is seen that results from 

OPENSEES analysis and Ohtori’s analysis are in good agreement (Table 5.1).  
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Table 5.1 Calibration of results for the OPENSEES non-linear frame.  
Structural Responses OPENSEES Ohtori et. al (2004) 

Peak story drift ratio 0.014 0.015 
Peak level acceleration (in/s2) 285.5 257.5 
Peak base shear (Kip) 1116.5 1137.5 

 

5.3 Non-linear springs representing hysteretic behavior of connections 

To input into the frame model, hysteretic behavior of connections was represented 

by non-linear springs. Non-linear stiffness of a spring which is a function of displacement 

was defined so that when the spring was subjected to the same load as the connection in 

the FEM model (Chapter 4) an equivalent hysteretic response can be obtained. 

To model the non-linear spring which provided the equivalent hysteretic response 

with the connection, OPENSEES truss element was used. The truss element only has 

axial degree-of-freedom. Behavior of a truss element is defined by its cross sectional area 

and assigned uni-axial material behavior. Two material constitutive laws were applied to 

obtain equivalent hysteretic responses. The first one was the OPENSEES “Steel 02” 

material model. This material model was employed to represent hysteretic behavior of the 

tapered tube connection without rotation restrained. Parameters of “Steel 02” material 

model are as follows (after OPENSEES Command Language Manual (Fig. 5.2)): 

• Fy: yield strength 

• E: initial elastic tangent 

• b: strain-hardening ratio  

• R0, cR1, cR2: parameter to control the transition from elastic to plastic branches. 
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Figure 5.2 “Steel 02” material model (from OPENSEES). 
 

Parameters of the “Steel 02” material model were varied to match hysteretic 

response from the non-linear spring with hysteretic response from FEM analysis for the 

tapered tube connection with free rotations at cladding side. Responses of the non-linear 

spring with different “Steel 02” material parameter sets shown in Table 5.2 can be seen 

from Figure 5.3 to Figure 5.7. 

 
Table 5.2 “Steel 02” parameter sets. 

Parameter set Steel02_01 Steel02_02 Steel02_03 Steel02_04 Steel02_05 

Fy (ksi) 46 46 46 46 46 
E (ksi) 5000 4200 4200 4200 4000 
b 0.01 0.01 0.01 0.01 0.006 
R0  20 25 30 35 35 
cR1  0.925 0.925 0.925 0.925 0.925 
cR2  0.15 0.15 0.15 0.15 0.1 
Cross-sectional area (in2) 0.08 0.08 0.08 0.08 0.08 
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Figure 5.3 Response of non-linear spring with parameter set Steel02_01. 
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Figure 5.4 Response of non-linear spring with parameter set Steel02_02. 
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Figure 5.5 Response of non-linear spring with parameter set Steel02_03. 
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Figure 5.6 Response of non-linear spring with parameter set Steel02_04. 
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Figure 5.7 Response of non-linear spring with parameter set Steel02_05. 
 

The second constitutive law was the OPENSEES “hysteretic material” model. 

Parameters of this material model are as follows (after OPENSEES Command Language 

Manual (Fig. 5.8)): 

• s1p,e1p: stress and strain (or force & deformation) at first point of the 

envelope in the positive direction 

• s2p, e2p: stress and strain (or force & deformation) at second point of the 

envelope in the positive direction 

• s3p, e3p: stress and strain (or force & deformation) at third point of the 

envelope in the positive direction (optional) 

• s1n, e1n: stress and strain (or force & deformation) at first point of the 

envelope in the negative direction 
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• s2n, e2n: stress and strain (or force & deformation) at second point of the 

envelope in the negative direction 

• s3n, e3n: stress and strain (or force & deformation) at third point of the 

envelope in the negative direction (optional) 

• pinchX: pinching factor for strain (or deformation) during reloading 

• pinchY: pinching factor for stress (or force) during reloading 

 

 

Figure 5.8 “Hysteretic material” model (from OPENSEES) 
 

Parameters of the “hysteretic material” model were varied to match hysteretic 

response from the non-linear spring with hysteretic response from FEM analysis of the 

tapered tube connection with rotations at cladding side restrained. Responses of the non-

linear spring with different “hysteretic material” parameter sets shown in Table 5.3 can 

be seen from Figure 5.9 to Figure 5.13.  
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Table 5.3 "Hysteretic material” parameter sets. 

Parameter set Hys01 Hys02 Hys03 Hys04 Hys05 

s1p (kip) 2.8849 2.8849 2.8849 2.8849 2884.9 
e1p (in) 0.1 0.1 0.1 0.1 0.1 
s2p (kip) 3.3718 3.3718 3.3551 3.3551 3355.1 
e2p (in) 0.126 0.126 0.145 0.145 0.145 
s3p (kip) 3.4193 3.4193 8.3821 8.3821 8382.1 
e3p (in) 0.195 0.195 1.03 1.03 1.03 
s1n (kip) -2.8849 -2.8849 -2.8849 -2.8849 -2884.9 
e1n (in) -0.1 -0.1 -0.1 -0.1 -0.1 
s2n (kip -3.3718 -3.3718 -3.3551 -3.3551 -3355.1 
e2n (in) -0.126 -0.126 -0.145 -0.145 -0.145 
s3n (kip) -3.4193 -3.4193 -8.3821 -8.3821 -8382.1 
e3n (in) -0.195 -0.195 -1.03 -1.03 -1.03 
pinchX  1 0.2 0.2 0.1 0.1 
pinchY  1 0.8 0.8 0.8 0.6 
Cross-sectional area (in2) 1 1 1 1 1 
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Figure 5.9 Response of non-linear spring with parameter set Hys01. 
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Figure 5.10 Response of non-linear spring with parameter set Hys02. 
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Figure 5.11 Response of non-linear spring with parameter set Hys03. 
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Figure 5.12 Response of non-linear spring with parameter set Hys04. 
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Figure 5.13 Response of non-linear spring with parameter set Hys05. 
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There were limitations in this material model to represent non-linear effects of 

this particular hysteretic response. Due to short of time of this research, behavior of the 

rotation restrained connection with higher hardening and pinching effects than the 

rotation free connection was not included in further analysis. 

Response from the non-linear spring with parameter set Steel02_05 was closest to 

the hysteretic behavior of tapered tube connection from ANSYS analysis. This parameter 

set was used to define the non-linear spring representing the tapered tube connection in 

the reported OPENSEES models. 

5.4 Non-linear analysis of the SAC 3-story building including hysteretic behavior 
of cladding-to-frame connections 

To investigate the effectiveness of hysteretic energy dissipation connections on 

seismic structural responses, non-linear springs with behavior as in Figure 5.7, 

representing tapered tube connections with a free condition at the cladding, were 

incorporated into the OPENSEES non-linear frame model. The number of truss elements 

representing non-linear springs at each joint was equal to number of connections at each 

joint (Fig. 5.14). A single connection was assumed for each piece of cladding being 

attached at that joint. Cladding masses were assigned at the free ends of the truss 

elements. At joints having more than 1 truss element, different truss elements connected 

the same two nodes - the frame joint and the cladding joint.  
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1 spring 2 springs 2 springs 2 springs 1 spring

2 springs 4 springs 4 springs 4 springs 2 springs

2 springs 4 springs 4 springs 4 springs 2 springs

Cladding mass

 

Figure 5.14 Input non-linear springs into the frame model. 
 

There were totally 27 frame elements for beams and columns and 40 elements for  

non-linear springs. The frame was analyzed with El Centro earthquake ground motion 

previously described in Chapter 3. Newmark integration method was used with time step 

of 0.01s. Analysis results with rigid and tapered tube connections were compared in 

Table 5.4. Analysis results indicated that structural responses were not significantly 

reduced when tapered tube connections were included. This was because the connection 

stiffness was initially too high to be effective. Time history plots of absolute cladding 

displacements and absolute frame displacements at 3rd floor are shown in Figure 5.15. 

Cladding deflections (relative displacements between steel frame and cladding) at 

different floors were shown in Figure 5.16. The maximum cladding deflection was only 

0.52 in (13.2 mm) resulting in moderate yielding in connections (see yielding in 

connection at 0.5 in (13.2 mm) deflection in Figure 4.21). This led to insignificant energy 

dissipation within the cladding as it was also too stiff to be effective as a MTMD (see 

Chapter 3). It is seen that this connection was not optimized for this structure.  
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Table 5.4 Analysis results with and without hysteretic connections 
Structural Responses Rigid connections Tapered tube 

connections 

Peak story drift ratio 0.014 0.014 
Peak level acceleration (in/s2) 285.5 283.2 
Peak base shear (Kip) 1116.5 1108.1 
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Figure 5.15 Frame and cladding absolute displacements at 3rd floor when tapered 
tube connections were used. 
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Figure 5.16 Cladding deflection at different floors when tapered tube connections 
were used. 
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A range of connection hysteretic behaviors were subsequently modeled to obtain earlier 

yielding and varying levels of energy dissipation within connections. Hysteretic 

behaviors with lower yielding stresses were tried to attain more hysteretic damping in 

connections. Hysteretic behaviors with higher hardening effects were tried to reduce 

deflection in connections after yielded. “Steel 02” material constitutive law was also used 

to model these behaviors. Parameters of material model and the corresponding hysteretic 

behaviors are shown in Table 5.5 and Figure 5.17 - 5.21.  

Table 5.5 Parameters of modified hysteretic behaviors. 
Parameter set HLOOP1 HLOOP2 HLOOP3 HLOOP4 HLOOP5 

Fy (ksi) 46 46 46 46 46 
E (ksi) 4000 4000 4000 4000 4000 
b 0.006 0.05 0.1 0.1 0.2 
R0  35 35 100 100 150 
cR1  0.925 0.925 0.925 0.925 0.925 
cR2  0.1 0.1 0.1 0.1 0.1 
Cross-sectional area (in2) 0.04 0.04 0.04 0.06 0.03 
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Figure 5.17 Modified hysteretic behavior “HLOOP1”. 
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Figure 5.18 Modified hysteretic behavior “HLOOP2”. 
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Figure 5.19 Modified hysteretic behavior “HLOOP3”. 
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Figure 5.20 Modified hysteretic behavior “HLOOP4”. 
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Figure 5.21 Modified hysteretic behavior “HLOOP5”. 
 

Analysis results of the reference frame with these modified hysteretic behaviors 

of connections were shown in Table 5.6. For the case of “HLOOP2”, peak story drift 
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(which occured at the 2nd floor) and base shear were reduced by 10.6% and 4.1% 

respectively, comparing with the rigid connection case. Time history plots of absolute 

cladding displacements and absolute frame displacements at 3rd floor for this case were 

shown in Figure 5.22. Cladding deflections at different floors were shown in Figure 5.23. 

Larger connection deflections were observed, leading to higher yielding within 

connections and more effective energy dissipation. However, the connection deflections 

differed significantly at each floor. The maximum connection deflection was 7 in (0.18 

m), which occurred at the 3rd floor, with minimal energy dissipation at the connections on 

other floors. It is predicted that a more uniform distribution of energy dissipation in the 

connections, which may provide smaller maximum connection deflection but adequate 

deflections in all connections will be more effective.  

Figure 5.24 shows relative displacements between panels at the 3rd floor. These 

displacements were measured as the relative displacements between cladding masses in 

the analysis model. It is noted that the width of gaps between cladding panels was 

moderate (maximum gap was on the order of 0.64 in (16.3 mm).  

 

Table 5.6 Structural responses when modified hysteretic behavior used. 
Structural 
Responses 

Rigid 
connection 

Tapered 
connection HLOOP1 HLOOP2 HLOOP3 HLOOP4 HLOOP5

Peak story drift 
ratio 0.0142 0.0141 0.0134 0.0127 0.0135 0.0139 0.0138 

Peak level 
acceleration 
(in/s2) 

285.5 283.2 281.3 278.8 280.7 280.4 281.9 

Peak base shear 
(kip) 1116.5 1108.1 1106.5 1070.3 1082.1 1096.8 1088.3 

Peak connection 
deflection (in) - 0.52 5.51 7.04 2.3 1.3 1.9 
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Figure 5.22 Frame and cladding absolute displacements at 3rd floor when 
“HLOOP2” hysteretic behavior of connections was used. 
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Figure 5.23 Cladding deflection at different floors when “HLOOP2” hysteretic 
behavior of connections was used. 
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Figure 5.24 Panel gaps due to relative displacement of cladding panels at 3rd floor 
when “HLOOP2” hysteretic behavior of connections was used. 

 

5.5 Conclusion 

This analysis has demonstrated the potential to utilize hysteretic energy 

dissipation connections to reduce responses of structures under earthquakes. This 

mechanism with current hysteretic behavior included for connections provides less 

energy dissipation than the mechanism presented in Chapter 3, but is predicted to require 

less displacements of cladding. Further analysis including other characteristics of 

potential connection behavior is needed to obtain more efficient energy dissipation 

effects.  
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and conclusions 

The objective of this research was to define a methodology for evaluating 

connection performance and highlight potential benefits and areas needing further study. 

This research focused on two possible sources of seismic energy dissipation from 

cladding system connections. First, cladding panels and their connections could 

incorporate an elastic damping system distributed throughout the building. An analytical 

model of a SAC 3-story moment resisting frame building including cladding masses and 

cladding-to-frame connections was developed in SAP2000. Modal analysis results 

indicated that natural periods and modal participations of the structural frame changed as 

stiffness of cladding-to-frame connections varied. This change was significant when the 

stiffness of cladding-to-frame connections in a range where period of cladding units was 

similar to the fundamental period of the structural frame. It is seen that cladding systems 

have considerable influences on dynamic behavior of buildings. These influences should 

be considered in dynamic analysis and designs of structures. Cladding systems may have 

positive contributions to the behavior of structures when subjected to dynamic loads.  

Seismic analysis of elastic systems was performed with earthquake loads 

including the El Centro earthquake ground motion acceleration, the IBC 2000 design 

response spectrum and the BOCA 1996 design response spectrum. Reponses of the 

structural frames were recorded as connections stiffness was varied. Results indicated 

that base shear and maximum moments in critical structural elements were reduced as 

much as 40% and 28% respectively comparing with the case of using traditional rigid 
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connections. Seismic structural responses were reduced the most when natural periods of 

cladding units were similar to the fundamental period of the frame.  

Even though displacement of cladding panels was not controlled with the 

simplistic connections used in the analysis, the potential to utilize cladding systems as 

elastic distributed damping systems to dissipate seismic energy was shown. Some initial 

attempts to limit deflections were also presented. Cladding systems may have the ability 

to reduce the response of structures under earthquakes if they are designed for this 

purpose. 

The other mechanism to dissipate seismic energy was based on hysteretic 

damping of cladding-to-frame connections. Promising results reported in previous 

research were revisited and applied in the reference structure used in this research. 

Hysteretic behavior of different types of connections was obtained through non-linear 

analysis of 3-dimensional FEM using ANSYS. Analytical results were calibrated with 

previously reported experimental results. It was observed that hysteretic response of a 

connection under cyclic displacements is dependent on rotational conditions at the 

cladding end of the connection.  

Hysteretic behavior of connections obtained from ANSYS analysis were then 

input into a non-linear frame model of the reference structure developed in OPENSEES. 

The OPENSEES frame model was able to take into account both geometric and material 

non-linearity and include hysteretic response of connections. Connections were 

represented by non-linear springs. Non-linear stiffness of a non-linear spring was defined 

such that when the spring was subjected to the same load as the connection in the FEA 

model an equivalent hysteretic response can be obtained. Time history analysis was 
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performed with the El Centro earthquake ground motion previously used for the 

SAP2000 model. Resulting response of the structure indicated that initial trial 

connections were less effective at reducing structural energy demands. The connection 

stiffness was initially too high to be effective. A range of connection hysteretic behaviors 

were subsequently modeled to obtain earlier yielding and varying levels of energy 

dissipation within connections. One hysteretic model resulted in a 10.6% reduction in 

story drift comparing with the case of using traditional rigid connections. This 

mechanism with current hysteretic behavior included for connections provides less 

energy dissipation than an elastic system, but is predicted to require less displacements of 

cladding. Displacement of cladding and effectiveness of energy dissipation in this 

mechanism can be improved by using an appropriate hysteretic behavior. For example, 

incorporating a hysteretic behavior with more hardening, which was not implemented in 

this research, might help to reduce the displacement of cladding. 

6.2 Limitations and recommendations for further research 

The current research was only a preliminary investigation of the potential to 

utilize cladding systems and engineered cladding to structure connections to reduce 

seismic structural response. Thus, there are aspects in this research that can be improved 

in further studies. First, in the SAP2000 model, unsophisticated connections which were 

simply plates of steel were used. At each node, there was only one connection. Rotation 

at the end of a connection was free. This might not exactly represent the behavior of 

cladding systems. Even though these limitations did not exist in the OPENSEES model, a 

better model in SAP2000 to examine the effectiveness of using cladding systems as 

elastic distributed damping systems should be constructed. More sophisticated 
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connections which provide equivalent stiffness as used in the current SAP2000 model but 

result in less displacement of cladding are desired. This is not a simple problem and 

might require an intensive research related to using different materials as well as 

innovative configurations of the connections to incorporate additional mass (such as a 

portion of the floor system) in the pre-cast element.  

Using non-linear springs to incorporate hysteretic behavior of connections into the 

model of the structural frame is convenient and reliable. However, these springs can not 

support the dead load of cladding. Not all types of hysteretic behavior of connections 

were modeled in the analysis. This can be improved by employing other material 

constitutive laws available in OPENSEES. Combining of different available material 

constitutive laws or developing a new one to represent hysteretic behavior of connections 

is feasible in OPENSEES. Other hysteretic behavior of connections should be applied to 

find the most appropriate one for this structure.  

After a most effective assumed behavior of connections is realized in 

OPENSEES, ANSYS analysis could then be re-evaluated with the multiple material 

models or significant variations to the ones used in this research to find a potential 

connection. Physical testing of the connection and cladding would verify the boundary 

conditions modeled and therefore the ANSYS modeling. 

Effectiveness of cladding systems is dependent on the dynamic characteristics of 

the structural frame and the earthquake load applied. Therefore, the concepts need to be 

investigated with different types of buildings subjected to a range of earthquakes having 

different characteristics of predominant frequency, peak ground acceleration, duration, 

input energy, etc. When the structure is subjected to low or moderate magnitude 
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earthquakes, the first mechanism (MTMD) could be employed. Elastic deformation of 

connections might be adequate to dissipate seismic energy and reduce structural response. 

When the structure is subjected to larger earthquakes, hysteretic damping through 

yielding in the connections could be employed to dissipate seismic energy. A 

combination of the two mechanisms in the same cladding connection system could also 

be considered. 
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